Platelet functions and energy metabolism in a patient with hexokinase deficiency

Author:

Akkerman JW,Rijksen G,Gorter G,Staal GE

Abstract

Abstract We have studied the regeneration of adenosine triphosphate (ATP) in the glycolytic pathway in platelets with a 75% reduction in hexokinase (HK) activity and have investigated aggregation and Ca2+ secretion. HK- deficient platelets had a normal glycolytic flux in the resting state, but responded insufficiently to stimulation with thrombin (5 U/ml). In contrast, glycogen contents and glycogenolysis were normal. When the metabolic adenine nucleotides were labeled with 14C-adenine, the patient's platelets showed a normal adenylate energy charge and a normal level of 14C-ATP. However, the inhibitor of mitochondrial energy generation, CN-, induced a weaker fall in 14C-ATP in the patient's platelets than in the controls. Analysis of secretion markers revealed decreased amounts of granule-bound ATP and secretable Ca2+, whereas granule-bound adenosine diphosphate (ADP), beta-thromboglobulin, N- acetyl-beta-D-glucosaminidase, and beta-glucuronidase were within the normal range. Aggregation and Ca2+ secretion induced by 5 U/ml thrombin were normal and were not changed in the presence of inhibitors of mitochondrial and glycogenolytic energy generation. Aggregation was also normal at 0.1 U/ml thrombin and was independent of these inhibitors, but Ca2+ secretion was greatly impaired when mitochondrial and glycogenolytic ATP resynthesis was abolished. These findings indicate that a severe reduction in HK activity causes insufficient acceleration of the glycolytic flux during stimulation with thrombin. This leads to impaired dense granule secretion in conditions where secretion depends on concurrent ATP resynthesis and glycolysis is rate limiting.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3