The xerocytosis of Hb SC disease

Author:

Ballas SK,Larner J,Smith ED,Surrey S,Schwartz E,Rappaport EF

Abstract

Abstract Patients with Hb SC disease were found to have microcytic and hyperchromic red cell indices despite mild reticulocytosis. Iron deficiency anemia was ruled out by the finding of normal serum ferritin levels. In order to determine whether the microcytosis was due to coexistent alpha-thalassemia, restriction endonuclease mapping was performed on genomic DNA extracted from peripheral blood leukocytes. Patients with Hb SC disease had microcytic indices despite the presence of a full complement of four alpha-genes (alpha alpha/alpha alpha), suggesting that the microcytosis may be due to cellular dehydration (or xerocytosis), since the mean corpuscular hemoglobin concentration in Hb SC disease patients was significantly higher than in controls. This possibility was investigated further by the determination of RBC cation content. RBC Na levels were similar in SC and normal red cells. Hb SC RBCs, however, had significantly reduced K levels. These findings show that RBC cation content, and thus cell water, is decreased in Hb SC disease. The decreased RBC K level in the presence of normal cellular Na concentration suggests selective K loss that is not due to inhibition of the Na K pump. Ouabain-insensitive K+ efflux was increased to four times normal in SC cells. Cell dehydration was confirmed by the demonstration of increased high-density RBCs on discontinuous Stractan density gradients and by osmotic gradient ektacytometry. Cellular dehydration and its sequelae were worse in CC erythrocytes and milder in AC cells than in Hb SC red cells. Taken together, these data indicate that in Hb SC disease the RBCs are severely dehydrated and typically microcytic and hyperchromic. Hb SC RBCs seem to be dehydrated due to selective K loss. These findings suggest a functional interrelationship between Hb SC, the red cell membrane, and cation regulation.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3