Acquired amegakaryocytic thrombocytopenic purpura: a syndrome of diverse etiologies

Author:

Hoffman R,Bruno E,Elwell J,Mazur E,Gewirtz AM,Dekker P,Denes AE

Abstract

Abstract The possible pathogenetic mechanisms responsible for the production of acquired amegakaryocytic thrombocytopenic purpura (AATP) were investigated in a group of patients with this disorder. Absence of megakaryocytes and small platelet glycoprotein-bearing mononuclear cells, as determined by immunochemical staining of patient marrows with an antisera to platelet glycoproteins, suggested that the defect in AATP occurs in an early progenitor cell of the megakaryocytic lineage. Using an in vitro clonal assay system for negakaryocytic progenitor cells or megakaryocyte colony-forming units (CFU-M), the proliferative capacity of AATP marrow cells was then assessed. Bone marrow cells from three of four patients formed virtually no megakaryocyte colonies, suggesting that in these individuals the AATP was due to an intrinsic defect in the CFU-M. Bone marrow cells from an additional patient, however, formed 12% of the normal numbers of colonies, providing evidence for at least partial integrity of the CFU-M compartment in this patient. Serum specimens from all six patients were screened for their capacity to alter in vitro megakaryocyte colony formation. Five of six sera enhanced colony formation in a stepwise fashion, demonstrating appropriately elevated levels of megakaryocyte colony- stimulating activity. The serum of the patient with partial integrity of the CFU-M compartment, however, stimulated colony formation only at low concentrations. At higher concentrations, this patient's serum actually inhibited the number of colonies cloned, suggesting the presence of a humoral inhibitor to CFU-M. Serum samples from all patients were further screened for such humoral inhibitors of megakaryocyte colony formation using a cytotoxicity assay. The patient whose serum was inhibitory to CFU-M at high concentrations was indeed found to have a complement-dependent serum IgG inhibitor that was cytotoxic to allogeneic and autologous marrow CFU-M but did not alter erythroid colony formation. These-studies suggest that AATP can be due to at least two mechanisms: either an intrinsic effect at the level of the CFU-M or a circulating cytotoxic autoantibody directed against the CFU-M.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3