Multimeric structure of platelet factor VIII/von Willebrand factor: the presence of larger multimers and their reassociation with thrombin- stimulated platelets

Author:

Fernandez MF,Ginsberg MH,Ruggeri ZM,Batlle FJ,Zimmerman TS

Abstract

Abstract The multimeric structure of platelet factor VIII/von Willebrand factor (FVIII/vWF) in cell extracts and in collagen and thrombin releasates has been analyzed by SDS polyacrylamide gel electrophoresis followed by detection with 125I-anti-FVIII/vWF. Platelets contained larger multimers than those normally present in plasma. When secreted FVIII/vWF was analyzed, all platelets. In contrast, in thrombin releasates the larger multimers were lost in a manner dependent on divalent cations, time, and thrombin dose. This loss could not be accounted for by modification of FVIII/vWF by thrombin or platelet enzymes since no effect of thrombin on the multimeric structure of FVIII/vWF in the absence of platelets or in the presence of platelet lysates was observed. Large multimers of 125I-labeled purified FVIII/vWF underwent divalent cation-dependent association with platelets in the presence of thrombin, indicating that the loss of FVIII/vWF from thrombin releasates was due to reassociation with the platelet. These studies show a structural difference between platelet and plasma FVIII/vWF that suggests a specific role for platelet FVIII/vWF in hemostasis.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanisms of hemostasis;Hemostasis Management of the Pediatric Surgical Patient;2024

2. Von Willebrand Factor in Health and Disease;Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology;2021-07

3. A novel approach to laboratory assessment and reporting of platelet von Willebrand factor;Platelets;2021-01-11

4. Involvement of platelet-derived VWF in metastatic growth of melanoma in the brain;Neuro-Oncology Advances;2021-01-01

5. Platelet α-granules are required for occlusive high-shear-rate thrombosis;Blood Advances;2020-07-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3