Affiliation:
1. Stanford University, Stanford, CA; and
2. Seattle Children’s Hospital, Seattle, WA
Abstract
Abstract
Immunotherapies have been successfully developed for the treatment of B-cell acute lymphoblastic leukemia (B-ALL) with FDA approval of blinatumomab, inotuzumab, and tisagenlecleucel for relapsed or refractory patients. These agents target either CD19 or CD22, which are both expressed on the surface of the leukemic blasts in the majority of patients. The use of these agents has greatly transformed the landscape of available treatment, and it has provided curative therapy in some patients. As the field has matured, we are learning that for most patients, the currently available immunotherapies are not curative. Leukemic resistance to both CD19 and CD22 pressure has been described and is a major component of developed resistance to these therapies. Patients with B-ALL have developed CD19- or CD22-negative B-ALL, and in more rare cases, they have undergone lineage switch to acute myeloid leukemia. Current efforts are focusing on overcoming antigen escape, either by forced antigen expression or by dual-targeting therapies. A functional immune system is also required for maximal benefit of immunotherapy, particularly with chimeric antigen receptor (CAR) T-cell therapies. Data are now being produced that may allow for the prospective identification of patients whose immune deficits may be identified up front and predict failure. Preclinical work is focusing on additional engineering of CAR T cells to overcome these inherent immune deficits. Last, with improved knowledge of which patients are likely to benefit from immunotherapy as definitive treatment, those patients who are predicted to develop resistance may be prospectively recommended to undergo a consolidative hematopoietic cell transplant to lessen the recurrence risk.
Publisher
American Society of Hematology
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献