Non-Myeloablative Transplants for Malignant Disease

Author:

Storb Rainer F.,Champlin Richard,Riddell Stanley R.,Murata Makato,Bryant Sophia,Warren Edus H.

Abstract

AbstractThis article discusses changes in the way hematopoietic stem cell allotransplants may be carried out in the future to treat patients with malignant hematological diseases. Specifically, the focus has shifted away from attempts at eradicating underlying diseases through toxic high-dose chemoradiation therapy towards using the stem cell donor's immune cells for that purpose (allogeneic graft-versus-tumor effect).The non-myeloablative transplant approaches hold promise in reducing the morbidity and mortality associated with conventional high-dose chemoradiation therapy, and they allow allogeneic transplants in elderly or medically infirm patients who are at present not candidates for transplantation. In the future, specific graft-versus-tumor responses may become possible by eliciting donor T cell responses to tumor-associated minor histocompatibility antigens.In Section I, Dr. Rainer Storb describes experimental studies in random-bred dogs that rely on non-cytotoxic immunosuppressive agents to establish stable allografts. Powerful postgrafting immunosuppression, traditionally directed at preventing graft-versus-host disease (GVHD), is also used to overcome host-versus-graft (HVG) reactions, thereby dramatically reducing the need for intensive immunosuppressive conditioning programs. Preclinical canine studies have been translated into the clinical setting for treatment of elderly or medically infirm patients with malignant hematological diseases. The pretransplant conditioning has been reduced to a single dose of 2 Gy total body irradiation (TBI) with or without fludarabine. The lack of toxicity makes it possible for transplants to be conducted in the outpatient setting. Multicenter trials have been initiated, and more than 300 patients have been successfully treated with hematopoietic stem cell grafts both from related and unrelated HLA-matched donors.In Section II, Dr. Richard Champlin describes clinical studies with therapeutic strategies that utilize relatively non-toxic, nonmyeloablative disease-specific preparative regimens incorporating fludarabine, together with other chemotherapeutic agents, to achieve disease suppression and engraftment of allogeneic hematopoietic cells and to allow subsequent infusions of donor lymphocytes. Remissions have been seen in patients with acute myelocytic, chronic myelocytic, chronic lymphocytic, leukemias, lymphomas, and myelomas.In Section III, Dr. Stanley Riddell and colleagues describe studies on isolation of T cells reactive with minor histocompatibility (H) antigens and involved both in GVHD and graft-versus-leukemia (GVL) responses. For example, the gene encoding a novel H-Y antigen in humans has been identified and shown to exhibit restricted tissue expression. Acute myelocytic leukemia stem cells were demonstrated to express the H-Y antigen and additional minor H antigens, and engraftment of such cells in NOD/SCID mice could be selectively prevented by minor antigen-specific T-cell clones. An autosomal encoded human minor H antigen associated with chronic GVHD has been demonstrated. A trial evaluating therapy of relapsed acute myelocytic leukemia or acute lymphoblastic leukemia after allogeneic stem cell transplantation with T-cell clones specific for recipient minor H antigens has been initiated.

Publisher

American Society of Hematology

Subject

Hematology

Reference123 articles.

1. Thomas ED, Blume KG, Forman SJ, eds. Hematopoietic Cell Transplantation, Second Ed. Boston: Blackwell Science; 1999.

2. Burchenal JH, Oettgen HF, Holmberg EAD, Hemphill SC, Reppert JA. Effect of total body irradiation on the transplantability of mouse leukemias. Cancer Res. 1960;20:425

3. Gale RP, Horowitz MM, Ash RC, et al. Identical twin bone marrow transplants for leukemia. Ann Intern Med. 1994;120:646–652.

4. Barnes DWH, Loutit JF. Treatment of murine leukaemia with x-rays and homologous bone marrow: II. Br J Haematol. 1957;3:241–252.

5. Mathe G, Amiel JL, Schwarzenberg L, Catton A, Schneider M. Adoptive immunotherapy of acute leukemia: Experimental and clinical results. Cancer Res. 1965;25:1525–1531.

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3