Features of Macrophage Differentiation Induced by p19INK4d, a Specific Inhibitor of Cyclin D–Dependent Kinases

Author:

Adachi Masashi1,Roussel Martine F.1,Havenith Karin1,Sherr Charles J.1

Affiliation:

1. From the Howard Hughes Medical Institute, and the Departments of Tumor Cell Biology and Immunology, St Jude Children's Research Hospital, Memphis, TN.

Abstract

The mitogen-dependent induction of cyclin D–dependent kinase activity is required for cells to enter the DNA synthetic (S) phase of their division cycle. Immature 32Dcl3 myeloid cells (32D) proliferating in the presence of interleukin-3 (IL-3) normally express cyclins D2 and D3, which assemble into binary holoenzyme complexes with their catalytic subunits, CDK4 and CDK6. When 32D cells are switched to medium containing granulocyte colony-stimulating factor (G-CSF ) instead of IL-3, D-type cyclins are degraded and, in the absence of their associated kinase activity, the cells arrest in the first gap phase (G1 ) of the cell cycle and differentiate to neutrophils. We derived 32D cells in which the expression of p19INK4d, a specific polypeptide inhibitor of CDK4 and CDK6, is regulated by the heavy metal-inducible sheep metallothionein promoter. Induction of p19INK4d in response to zinc prolonged cell survival in the absence of growth factor treatment. When maintained in medium containing both IL-3 and zinc, these cells lost cyclin D–dependent kinase activity, underwent G1 phase arrest, and acquired certain morphologic, antigenic, and functional properties of mononuclear phagocytes. Cells induced to express p19INK4d did not synthesize receptors for macrophage colony-stimulating factor (M-CSF/CSF-1) and reverted to an immature myeloid phenotype when shifted back into medium containing IL-3 alone. These cells exhibited accelerated differentiation to neutrophils in response to G-CSF but also gave rise to macrophage-like cells when maintained in medium containing both G-CSF and zinc. Therefore, the acquisition of macrophage properties in response to zinc treatment neither depended upon IL-3 nor upon G1 phase arrest per se and instead reflects some ability of p19INK4d, and presumably cyclin D–dependent kinases, to affect myeloid differentiation.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3