The Metastatic Characteristics of Murine Lymphoma Cell Lines In Vivo Are Manifested After Target Organ Invasion

Author:

Aoudjit Fawzi1,Potworowski Edouard F.1,St-Pierre Yves1

Affiliation:

1. From the Immunology Research Center, Institut Armand-Frappier, Université du Québec, Québec, Canada.

Abstract

Abstract The ability of a tumor cell to survive is critical for successful dissemination to sites distant from the primary tumor. Tumor cells must enter blood circulation, resist hemodynamic shear stress of the blood circulation, successfully extravasate, and then migrate through dense tissue stroma to a site favorable for tumor growth. Some tumor cells must therefore be endowed with peculiar abilities to successfully metastasize, whereas others, although capable of forming tumor in specific organs, cannot metastasize. This property has often been associated with the homing ability of a given tumor cell, likely through the expression of organ-specific homing receptors that are critical for the extravasation process. The present work was aimed at establishing the point at which metastatic and nonmetastatic lymphoma cells diverge. Although 164T2 and 267T2 lymphoma cell lines can successfully form thymic lymphoma when injected intrathymically, only the 164T2 clone can efficiently form tumor in kidneys, spleen, and liver after intravenous inoculation. Using the Indium-labeling technique to monitor the homing kinetic of both cell lines, we showed that the critical step for the successful metastasis of the lymphoma cell was determined in the final steps of the disseminating process, namely after homing. These results indicate that, whereas binding of tumor cells to vascular endothelium through specific adhesion mechanisms is a prerequisite for dissemination of tumor cells, the resistance of a tumor cell to the antagonist action of the host and/or its ability to grow tumor occurs only after homing to the target organ.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3