Affiliation:
1. From the Institute of Histology and Embryology, Lisbon Medical School, and the Nonlinear Dynamics Group, IST Department of Physics, Lisbon, Portugal.
Abstract
It is believed that the 3-dimensional organization of centromeric heterochromatin in interphase may be of functional relevance as an epigenetic mechanism for the regulation of gene expression. Accordingly, a likely possibility is that the centromeres that spatially associate into the heterochromatic structures (chromocenters) observed in the G1 phase of the cell cycle will differ in different cells. We sought to address this issue using, as a model, the chromocenters observed in quiescent normal human hematopoietic cells and primary fibroblasts. To do this, we analyzed the spatial relationships among different human centromeres in 3-D preserved cells using nonisotopic in situ hybridization and confocal microscopy. We showed quantitatively that chromocenters in all cell types do indeed represent nonrandom spatial associations of certain centromeres. Furthermore, the observed patterns of centromere association indicate that the chromocenters in these cell types are made of different combinations of specific centromeres, that hematopoietic cells are strikingly different from fibroblasts as to the composition of their chromocenters and that centromeres in peripheral blood cells appear to aggregate into distinct “myeloid” (present in monocytes and granulocytes) and “lymphoid” (present in lymphocytes) spatial patterns. These findings support the idea that the chromocenters formed in the nucleus of quiescent hematopoietic cells might represent heterochromatic nuclear compartments involved in the regulation of cell-type-specific gene expression, further suggesting that the spatial arrangement of centromeric heterochromatin in interphase is ontogenically determined during hematopoietic differentiation.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
91 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献