Isolation and characterization of plasmacytoid dendritic cells from Flt3 ligand and granulocyte-macrophage colony-stimulating factor–treated mice

Author:

Björck Pia1

Affiliation:

1. From the Department of Dermatology, University of Pittsburgh, PA.

Abstract

Abstract Interferon α/β plays an important role in the first-line defense against viral infections and can modulate cytokine responses by T-helper cells. Type 1 interferons (IFNs) are clinically important in infectious diseases and in the treatment of leukemia and lymphomas. Many different cell types have the capacity to produce IFN-α after encounter with virus and bacteria. The major, natural type 1 IFN–producing cell in humans was recently described as the plasmacytoid T cell, or pDC2, and it can differentiate into dendritic cells (DCs) on culture. This study describes the murine natural IFN-α–producing cell, or pDC2, that shares morphologic features with its human counterpart but has some distinct phenotypical characteristics. Murine plasmacytoid DCs can be differentially isolated based on their expression of CD11c, B220 (CD45R), and Thy1.2 (CD90). They lack expression of myeloid (eg, CD11b) antigens and CD8α, a marker used to isolate lymphoid DCs. Like human pDC2, murine plasmacytoid DCs exhibit their maximal type 1 IFN–producing capacity at a precursor stage; pDCs isolated from bone marrow responded to viral stimulation with higher IFN-α production than cells of the same phenotype isolated from spleen. Mobilization of mice with Flt3 ligand (Flt3L) or Flt3L and granulocyte-macrophage colony-stimulating factor, hematopoietic factors that specifically enhance DC growth, resulted in strikingly increased numbers of pDC in bone marrow and spleen. The isolation of this novel murine DC subset may serve as a useful tool in the study of viral immunobiology and for the design of treatments for murine malignancies.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 281 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3