All-Trans Retinoic Acid Delays the Differentiation of Primitive Hematopoietic Precursors (lin−c-kit+Sca-1+) While Enhancing the Terminal Maturation of Committed Granulocyte/Monocyte Progenitors

Author:

Purton Louise E.1,Bernstein Irwin D.1,Collins Steven J.1

Affiliation:

1. From the Clinical Research and Molecular Medicine Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA; and The Department of Pediatrics, The University of Washington, Seattle, WA.

Abstract

Abstract All-trans retinoic acid (ATRA) is a potent inducer of terminal differentiation of malignant promyelocytes, but its effects on more primitive hematopoietic progenitors and stem cells are less clear. In this study, we investigated the effect of ATRA on highly enriched murine hematopoietic precursor cells (lin−c-kit+Sca-1+) grown in liquid suspension culture for 28 days. ATRA initially slowed the growth of these hematopoietic precursors but prolonged and markedly enhanced their colony-forming cell production compared with the hematopoietic precursors cultured in its absence. At 7 and 14 days of culture, a substantially greater percentage of cells cultured with ATRA did not express lineage-associated antigens (55.4% at day 7 and 68.6% at day 14) and retained expression of Sca-1 (44.7% at day 7 and 79.9% at day 14) compared with cells grown in its absence (lin−cells: 31.5% at day 7 and 4% at day 14; Sca-1+: 10.4% at day 7 and 0.7% at day 14). Moreover, a marked inhibition of granulocyte production was observed in cultures continuously incubated with ATRA. Significantly, ATRA markedly prolonged and enhanced the production of transplantable colony-forming unit-spleen (CFU-S) during 14 days of liquid suspension culture. In contrast with its effects on primitive lin−c-kit+Sca-1+hematopoietic precursors, ATRA did not exert the same effects on the more committed lin−c-kit+Sca-1−progenitor cells. Moreover, the late addition of ATRA (7 days post-culture initiation) to cultures of primitive hematopoietic precursors resulted in a marked decrease in colony-forming cell production in these cultures, which was associated with enhanced granulocyte differentiation. These observations indicate that ATRA has different effects on hematopoietic cells depending on their maturational state, preventing and/or delaying the differentiation of primitive hematopoietic precursors while enhancing the terminal differentiation of committed granulocyte/monocyte progenitors.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Reference54 articles.

1. The steroid and thyroid hormone receptor superfamily.;Evans;Science,1988

2. Differential expression and ligand regulation of the retinoic acid receptor alpha and beta genes.;de The;EMBO J,1989

3. Expression of retinoic acid receptor α in human leukemia cells with variable responsiveness to retinoic acid.;Gallagher;Leukemia,1989

4. Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid.;Breitman;Proc Natl Acad Sci USA,1980

5. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia.;Huang;Blood,1988

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3