Insulinlike growth factor–I signaling in multiple myeloma: downstream elements, functional correlates, and pathway cross-talk

Author:

Qiang Ya-Wei1,Kopantzev Eugene1,Rudikoff Stuart1

Affiliation:

1. From the Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD.

Abstract

In multiple myeloma cells, insulinlike growth factor–I (IGF-I) activates 2 distinct signaling pathways, mitogen-activated protein kinase (MAPK) and phosphoinositol 3-kinase (PI-3K), leading to both proliferative and antiapoptotic effects. However, it is unclear through which of these cascades IGF-I regulates these different responses. The present studies identify a series of downstream targets in the PI-3K pathway, including glycogen synthase kinase–3β, p70S6 kinase, and the 3 members of the Forkhead family of transcription factors. The contribution of the MAPK and PI-3K pathways and, where possible, individual elements to proliferation and apoptosis was evaluated by means of a series of specific kinase inhibitors. Both processes were regulated almost exclusively by the PI-3K pathway, with only minor contributions associated with the MAPK cascade. Within the PI-3K cascade, inhibition of p70S6 kinase led to significant decreases in proliferation and protection from apoptosis. Activation of p70S6 kinase could also be prevented by MAPK inhibitors, indicating regulation by both pathways. The Forkhead transcription factor FKHRL1 was observed to provide a dual effect in that phosphorylation upon IGF-I treatment resulted in a loss of ability to inhibit proliferation and induce apoptosis. The PI-3K pathway was additionally shown to exhibit cross-talk and to regulate the MAPK cascade, as inhibition of PI-3K prevented activation of Mek1/2 and other downstream MAPK elements. These results define important elements in IGF-I regulation of myeloma cell growth and provide biological correlates critical to an understanding of growth-factor modulation of proliferation and apoptosis.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3