Molecular Mechanisms of FVII Deficiency: Expression of Mutations Clustered in the IVS7 Donor Splice Site of Factor VII Gene

Author:

Pinotti M.1,Toso R.1,Redaelli R.1,Berrettini M.1,Marchetti G.1,Bernardi F.1

Affiliation:

1. From the Dipartimento di Biochimica e Biologia Molecolare - CIBF, Sezione SBPGU, Università di Ferrara, Ferrara; the Divisione di Ematologia, Ospedale Niguarda, Milano; and the Istituto di Medicina Interna e di Medicina Vascolare, Università di Perugia, Perugia, Italy.

Abstract

Abstract In three Italian patients, two point mutations and a short deletion were found in the intron 7 of factor VII gene, clustered in the donor splice site and located in the first of several repeats. The mutation 9726+5G→A, the most frequent cause of symptomatic factor VII deficiency in Italy, as well as the deletion (9729del4) gave rise in expression studies to abnormally spliced transcripts, which were exclusively produced from the cryptic site in the second repeat. The insertion in the mature mRNA of the first intronic repeat caused (9726+5G→A) a reading frameshift, abolishing most of the factor VII catalytic domain, or produced (9729del4), an altered factor with 11 additional residues, the activity of which was not detectable in the cell medium after mutagenesis and expression studies. Studies of factor VII ectopic mRNA from leukocytes and expression studies indicated that the deleted gene produced 30% of normally spliced transcript. Differently, the 9726+5G→A mutation permitted a very low level (0.2% to 1%) of correct splicing to occur, which could be of great importance to prevent the onset, in the homozygous patients, of most of the life-threatening bleeding symptoms. The 9726+7A→G mutation was found to be a rare and functionally silent polymorphism. These findings, which provide further evidence of the interplay of sequence and position in the 5′ splice site selection, throw light on the heterogeneous molecular bases and clinical phenotypes of FVII deficiency. © 1998 by The American Society of Hematology.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3