Epstein-Barr Virus (EBV) in Endemic Burkitt's Lymphoma: Molecular Analysis of Primary Tumor Tissue

Author:

Tao Qian1,Robertson Keith D.1,Manns Angela1,Hildesheim Allan1,Ambinder Richard F.1

Affiliation:

1. From the Oncology Center, Johns Hopkins Medical Institutions, Baltimore, MD, and the National Institutes of Health, Rockville, MD.

Abstract

AbstractMany aspects of Epstein-Barr virus (EBV) and tumor biology have been studied in Burkitt's lymphoma (BL)-derived cell lines. However, in tissue culture, patterns of gene expression and C promoter-G (CpG) methylation often change and viral strain selection may occur. In this report, 10 cases of snap-frozen endemic BL tumors are characterized in terms of viral gene expression, promoter usage, methylation, and viral strain. EBNA1 and BamHI-A rightward transcripts (BART) were detected in 7 of 7 and LMP2A transcripts in 5 of 7 tumors with well-preserved RNA. Transcripts for the other EBNAs and for LMP1 were not detected in any tumor. These tumors differ from BL cell lines in that they lack a variety of lytic cycle transcripts. This pattern of viral gene expression in endemic BL is similar to that reported in peripheral blood mononuclear cells (PBMCs) from healthy EBV–seropositive individuals. EBNA1 transcripts originated from the Q promoter (Qp) but not C, W, or F promoters that drive transcription of EBNA1 in other circumstances. Whereas Cp has been previously shown to be entirely CpG methylated in BL, bisulfite genomic sequencing showed virtually no methylation in Qp. Type-A EBV was detected in 6 of 10 and type B in 4 of 10 cases. A previously reported 30bp deletion variant in the carboxyl terminal of LMP1 gene was detected in 5 of 10 cases. The association with both A and B strains contrasts with EBV–associated Hodgkin's disease, nasopharyngeal carcinoma, and post-transplant lymphoproliferative disease, which are much more consistently associated with A strain virus.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3