Interleukin-10 promotes the maintenance of antitumor CD8+ T-cell effector function in situ

Author:

Fujii Shin-ichiro1,Shimizu Kanako1,Shimizu Takashi1,Lotze Michael T.1

Affiliation:

1. From the Department of Surgery, University of Pittsburgh School of Medicine, and the Division of Biological Therapeutics, University of Pittsburgh Cancer Institute, PA.

Abstract

Interleukin-10 (IL-10) is a multifunctional cytokine that can exert suppressive and stimulatory effects on T cells. It was investigated whether IL-10 could serve as an immunostimulant for specific CD8+ cytotoxic T cell (CTL) in vivo after vaccination and, if so, under what conditions. In tumor prevention models, administration of IL-10 before, or soon after, peptide-pulsed primary dendritic cell immunization resulted in immune suppression and enhanced tumor progression. Injection of IL-10, however, just after a booster vaccine significantly enhanced antitumor immunity and vaccine efficacy. Analysis of spleen cells derived from these latter animals 3 weeks after IL-10 treatment revealed that the number of CD8+CD44hi CD122+ T cells had increased and that antigen-specific proliferation in vitro was enhanced. Although cytotoxicity assays did not support differences between the various treatment groups, 2 more sensitive assays measuring antigen-specific interferon-γ production at the single-cell level demonstrated increases in the number of antigen-specific responder T cells in animals in the vaccine/IL-10 treatment group. Thus, IL-10 may maintain the number of antitumor CD8+ T cells. In adoptive transfer studies, the ability of IL-10 to maintain CTL function could be enhanced by the depletion of CD4+ T cells. This suggests that IL-10 mediates contrasting effects on both CD4+ and CD8+ T cells that result in either immune dampening or immune potentiation in situ, respectively. Appreciation of this dichotomy in IL-10 immunobiology may allow for the design of more effective cancer vaccines designed to activate and maintain specific CD8+ T-cell effector function in situ.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Reference53 articles.

Cited by 160 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3