Caspase-independent commitment phase to apoptosis in activated blood T lymphocytes: reversibility at low apoptotic insult

Author:

Dumont Céline1,Dürrbach Antoine1,Bidère Nicolas1,Rouleau Matthieu1,Kroemer Guido1,Bernard Ghislaine1,Hirsch François1,Charpentier Bernard1,Susin Santos A.1,Senik Anna1

Affiliation:

1. From the Laboratoire d'Immunologie Cellulaire et de Transplantation, Laboratoire de l'Apoptose, Cancer et Immunité, Villejuif, France; Unité INSERM 343, Hôpital de l'Archet, Nice, France.

Abstract

Abstract Little is known about the mechanisms of programmed death triggered in T lymphocytes by stimuli that can bypass caspase activation. Anti-CD2 monoclonal antibody and staurosporine are such apoptosis inducers because they operate in the presence of broad-spectrum caspase inhibitors BOC-D.fmk and Z-VAD.fmk. A system was devised, based on the isolation according to density of activated blood T cells progressively engaged in the apoptotic process. This allowed definition of a sequence of caspase-dependent and caspase-independent apoptogenic events that are triggered by anti-CD2 and staurosporine. Thus, a commitment phase to apoptosis was defined that is entirely caspase independent and that is characterized by cell volume loss, partial chromatin condensation, and release into the cytosol and the nucleus of mitochondrial “apoptosis-inducing factor ” (AIF). Committed cells were viable, displayed a high mitochondrial inner transmembrane potential (▵Ψm), and lacked large-scale and oligonucleosomal DNA fragmentation. Mitochondrial release of AIF was selective because cytochrome c was retained in mitochondria of the very same cells. Mitochondrial release of cytochrome c occurred later, at the onset of the execution phase of apoptosis, concurrently with ▵Ψm collapse, poly (ADP-ribose) polymerase cleavage, and DNA fragmentation. The apoptogenic events of this commitment phase are reversible if the strength of the stimulus is low and of short duration.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3