Affiliation:
1. From the Division of Hematology, University of Washington, Seattle, WA; and the Division of Hematology, the Department of Medicine, University Hospital of Zurich, Zurich, Switzerland.
Abstract
AbstractUnder normal conditions, platelets do not adhere to endothelium. However, when platelets or endothelial cells are stimulated by thrombin or cytokines, respectively, platelets bind avidly to endothelium. Because there is accumulating evidence that endothelial cells may become apoptotic under certain proinflammatory or prothrombotic conditions, we investigated whether endothelial cells undergoing apoptosis may become proadhesive for nonactivated platelets. Human umbilical vein endothelial cells (HUVEC) were induced to undergo apoptosis by staurosporine, a nonspecific protein kinase inhibitor, or by culture in suspension with serum-deprivation. After treatment of HUVEC or platelets with different receptor antagonists, nonactivated, washed human platelets were allowed to adhere to HUVEC for 20 minutes. To exclude matrix involvement, platelet binding was measured in suspension by using flow cytometry. Independent of the method of apoptosis induction, there was a marked increase in platelet binding to apoptotic HUVEC. Although HUVEC exhibited maximal adhesiveness for platelets after 2 to 4 hours, complete DNA fragmentation of HUVEC occurred only several hours later. Adhesion assays after blockade of different platelet receptors showed only involvement of β1-integrins. Platelet binding to apoptotic HUVEC was inhibited by more than 70% when platelets were treated with blocking anti-β1 antibodies. Treatment of apoptotic HUVEC with blocking antibodies to different potential platelet receptors, including known ligands for β1-integrins, did not affect platelet binding. As assessed by determination of β-thromboglobulin and platelet factor 4 in the supernatants, platelets bound to apoptotic HUVEC became slightly activated. However, significant expression of platelet P-selectin (CD62P) was not found. These data provide further evidence that endothelial cells undergoing apoptosis may contribute to thrombotic events.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
163 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献