In vivo manipulation of dendritic cells to induce therapeutic immunity

Author:

Merad Miriam1,Sugie Tomoharu1,Engleman Edgar G.1,Fong Lawrence1

Affiliation:

1. From the Department of Pathology, Stanford University School of Medicine, Stanford, CA.

Abstract

Efficient antigen presentation and T-cell priming are essential components of effective antitumor immunity. Dendritic cells are critical to both of these functions but to date no method has been devised that both targets antigen to these cells and activates them, in situ, in a manner that induces systemic immunity. In this study we combined a dendritic cell growth factor, Flt3 ligand, with a dendritic cell activator, immunostimulatory DNA, and a tumor antigen to activate and load dendritic cells in vivo. Initial studies showed that immunostimulatory DNA not only activates dendritic cells but also prolongs their survival in vivo and in vitro. Following treatment of mice with Flt3 ligand, coadministration of immunostimulatory DNA and antigen induced potent antitumor immunity, resulting in both tumor prevention and regression of existing tumors. CD8 cytotoxic T lymphocytes but not CD4 T cells were required for tumor protection. Natural killer cells also contributed to tumor protection. These results show that dendritic cells can be loaded with antigen and activated, in situ, and provide the basis for dendritic cell- targeted clinical strategies.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Reference36 articles.

1. Immunobiology of dendritic cells.;Banchereau;Annu Rev Immunol.,2000

2. Dendritic cells and the control of immunity.;Banchereau;Nature.,1998

3. Human sunlight-induced basal-cell-carcinoma-associated dendritic cells are deficient in T cell co-stimulatory molecules and are impaired as antigen-presenting cells.;Nestle;Am J Pathol.,1997

4. Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma.;Enk;Int J Cancer.,1997

5. Human renal-cell carcinoma tissue contains dendritic cells.;Thurnher;Int J Cancer.,1996

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3