Structural Studies of Fibrinolysis by Electron Microscopy

Author:

Veklich Yuri1,Francis Charles W.1,White Janice1,Weisel John W.1

Affiliation:

1. From the Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA; and the Vascular Medicine Unit, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY.

Abstract

AbstractFibrin is degraded by the fibrinolytic system in which a plasminogen activator converts plasminogen to plasmin, a serine protease that cleaves specific bonds in fibrin leading to solubilization. To elucidate further the biophysical processes involved in conversion of insoluble fibers to soluble fragments, fibrin was treated with either plasmin or the combination of plasminogen and plasminogen activator, and morphologic changes were observed using scanning electron microscopy. These changes were correlated with biochemical analysis and with characterization of released, soluble fragments by transmission electron microscopy. Initial changes in the fibrin matrix included creation of many free fiber ends and gaps in the continuity of fibers. With more extensive digestion, free fiber segments associated laterally, resulting in formation of thick fiber bundles. Supernatants of digesting clots, containing soluble derivatives, were negatively contrasted and examined by transmission electron microscopy. Large, complex fragments containing portions of multiple fibers were observed, as were pieces of individual fibers and smaller fragments previously identified. Some large fragments had sharply defined ends, indicating that they had been cleaved perpendicularly to the fiber direction. Other fibers showed splayed ends or a lacy meshwork of surrounding protofibrils. Longer times generated more small fragments whose molecular composition could be inferred from their appearance. These results indicate that fibrinolytic degradation results in larger pieces than previously identified and that plasmin digestion proceeds locally by transverse cutting across fibers rather than by progressive cleavage uniformly around the fiber.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3