Radiosensitivity of thymic interleukin-7 production and thymopoiesis after bone marrow transplantation

Author:

Chung Brile1,Barbara-Burnham Lucia1,Barsky Lora1,Weinberg Kenneth1

Affiliation:

1. From the Department of Pediatrics, Division of Research Immunology and Bone Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California School of Medicine.

Abstract

Interleukin-7 (IL-7) is the major thymopoietic cytokine. Injections of IL-7 after murine bone marrow transplantation (BMT) correct defects in thymic differentiation, including thymic hypocellularity, abnormal differentiation of CD3− CD4−CD8− (triple-negative [TN]) thymocytes into CD4+ CD8+ (double-positive [DP]) cells, and antigen-specific mature T-lymphocyte proliferation. To determine whether IL-7 production is decreased in BMT recipients, BMT was performed with congenic murine donor-recipient strains and escalating doses of pre-BMT conditioning. Increasing doses of radiation resulted in decreased thymic cellularity and maturation from the TN to the DP stage. Quantitative reverse transcription–polymerase chain reaction analyses demonstrated that intrathymic production of IL-7 was significantly decreased in irradiated mice than in nonirradiated controls. Decline in IL-7 transcript levels was correlated with the dose of radiation administered. Analyses of the numbers of CD45− major histocompatibility complex class II+ thymic stromal cells suggested that the mechanism for the decreased IL-7 production was loss of IL-7–producing thymic stromal cells. Experiments indicated that pre-BMT conditioning with radiation led to decreased stromal production of IL-7 and consequent blocks in the maturation of thymocytes. They provided a mechanism for both the abnormal thymopoiesis observed after BMT and the previously observed beneficial effects of IL-7 administration in murine models. Impaired production of IL-7 by thymic stroma may be a general model for the clinically observed adverse effects of cytotoxic therapy on thymopoiesis.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3