Vascular Smooth Muscle Cells Potentiate Plasmin Generation by Both Urokinase and Tissue Plasminogen Activator-Dependent Mechanisms: Evidence for a Specific Tissue-Type Plasminogen Activator Receptor on These Cells

Author:

Ellis Vincent1,Whawell Simon A.1

Affiliation:

1. From the Thrombosis Research Institute, London, UK.

Abstract

AbstractPlasminogen activators play a role in the response of the vessel wall to injury, presumably by mediating the degradation of extracellular matrix (ECM) by vascular smooth muscle cells (VSMCs) that is necessary for their migration and proliferation. We have therefore investigated the ability of VSMCs to assemble specific cell surface plasminogen-activating systems. Urokinase-type plasminogen activator (uPA) bound to a single class of site on VSMCs (kd, 2 nmol/L), binding of pro-uPA resulted in a large potentiation of plasmin generation and both were competed by antibodies to the uPA receptor (uPAR). Tissue-type plasminogen activator (tPA) also bound to VSMCs as determined by functional assay, with the binding isotherms showing two classes of binding site with apparent kds of 25 and 300 nmol/L. tPA binding to the higher affinity site caused a greater than 90-fold enhancement of the activation of cell bound plasminogen, whereas the lower affinity binding, mediated primarily by the ECM, had little effect on tPA activity. The high-affinity binding of tPA to VSMCs resulted in an eightfold greater potential for plasmin generation than the binding of uPA, with this difference increasing to 15-fold after thrombin stimulation of the cells due to a 1.8-fold increase in tPA binding. These data show a novel specific tPA receptor on VSMCs that may be important for the regulation of plasminogen activation in various vascular pathologies.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3