Affiliation:
1. From the Department of Cell and Molecular Biology and the Department of Pathology, Northwestern University, Chicago, IL.
Abstract
The megakaryoblastic CHRF-288 cell line was used to investigate signal transduction pathways responsible for proplateletlike formation (PPF). The role of fibronectin (FN) and protein kinase C (PKC) activation in PPF were examined. In the presence of serum and phorbol 12-myristate 13-acetate (PMA), a PKC activator, cells exhibited full megakaryocytic differentiation, manifested by adhesion, shape change, increased cell size, polyploidy, PPF, and expression of CD41+, CD61+, and CD62P+. The same morphologic and phenotypic features were observed in serum-free cultures in the presence of FN/PMA. Only partial differentiation occurred when other integrin ligands were substituted for FN. FN alone induced minimal cell adhesion and spreading, while PMA alone induced only polyploidy without adhesion. Signal transduction changes involved the activation of the extracellular signal–regulated protein kinase 1 (ERK1)/ERK2 as well as c-Jun amino-terminal kinase 1 (JNK1)/stress-activated protein kinase (SAPK). Phosphoinositide-3 kinase and p38 were not stimulated under these conditions. Inhibitors were used to identify the causal relationship between signaling pathways and PPF. PD98059 and GF109203X, inhibitors of ERK1/ERK2 pathway and PKC, respectively, blocked PPF, while adhesion, spreading, and polyploidy were normal. These studies show that activation of ERK1/ERK2 mitogen-activated protein kinase pathway plays a critical role in PPF. The elucidation of the signal transduction pathway on megakaryocyte development and PPF is of crucial importance for understanding this unique biological process.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献