Translational pathophysiology: a novel molecular mechanism of human disease

Author:

Cazzola Mario1,Skoda Radek C.1

Affiliation:

1. From the Department of Hematology, University of Pavia Medical School and Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico S. Matteo, Pavia, Italy; and Clinical Cooperation Unit for Molecular Hematology-Oncology, German Cancer Research Center (DKFZ), and Department of Medicine V, University of Heidelberg, Heidelberg, Germany.

Abstract

In higher eukaryotes, the expression of about 1 gene in 10 is strongly regulated at the level of messenger RNA (mRNA) translation into protein. Negative regulatory effects are often mediated by the 5′-untranslated region (5′-UTR) and rely on the fact that the 40S ribosomal subunit first binds to the cap structure at the 5′-end of mRNA and then scans for the first AUG codon. Self-complementary sequences can form stable stem-loop structures that interfere with the assembly of the preinitiation complex and/or ribosomal scanning. These stem loops can be further stabilized by the interaction with RNA-binding proteins, as in the case of ferritin. The presence of AUG codons located upstream of the physiological start site can inhibit translation by causing premature initiation and thereby preventing the ribosome from reaching the physiological start codon, as in the case of thrombopoietin (TPO). Recently, mutations that cause disease through increased or decreased efficiency of mRNA translation have been discovered, defining translational pathophysiology as a novel mechanism of human disease. Hereditary hyperferritinemia/cataract syndrome arises from various point mutations or deletions within a protein-binding sequence in the 5′-UTR of the L-ferritin mRNA. Each unique mutation confers a characteristic degree of hyperferritinemia and severity of cataract in affected individuals. Hereditary thrombocythemia (sometimes called familial essential thrombocythemia or familial thrombocytosis) can be caused by mutations in upstream AUG codons in the 5′-UTR of the TPO mRNA that normally function as translational repressors. Their inactivation leads to excessive production of TPO and elevated platelet counts. Finally, predisposition to melanoma may originate from mutations that create translational repressors in the 5′-UTR of the cyclin-dependent kinase inhibitor–2A gene.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 169 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3