Human natural killer cells with polyclonal lectin and immunoglobulinlike receptors develop from single hematopoietic stem cells with preferential expression of NKG2A and KIR2DL2/L3/S2

Author:

Miller Jeffrey S.1,McCullar Valarie1

Affiliation:

1. From the Department of Medicine, University of Minnesota Cancer Center, Minneapolis, MN.

Abstract

Abstract The stage of progenitor maturation and factors that determine the fate and clonal acquisition of human natural killer (NK) cell receptors during development are unknown. To study human NK cell receptor ontogeny, umbilical cord blood CD34+/Lin−/CD38− cells were cultured with a murine fetal liver line (AFT024) and defined cytokines. In the absence of lymphocyte-stimulating cytokines or when contact with AFT024 was prohibited, NK cell progeny were killer immunoglobulinlike receptor (KIR) and CD94 lectin receptor negative. In contrast, efficient NK cell differentiation and receptor acquisition was dependent on direct contact of progenitors with AFT024 and the addition of interleukin-15 (IL-15) or IL-2 but not IL-7. To address the question of whether receptor acquisition was determined at the stem cell level, single CD34+/Lin−/CD38−progenitors were studied. More than 400 single cell progeny were analyzed from cultures containing IL-15 or IL-2 and NK cells were always polyclonal, suggesting that receptor fate is determined beyond an uncommitted progenitor and that receptor-negative NK cells acquire class I-recognizing receptors after lineage commitment. KIR2DL2/L3/S2 was expressed more than KIR2DL1/S1 or KIR3DL1, and NKG2A was the dominant CD94 receptor, independent of whether the stem cell source contained the respective major histocompatibility complex class I ligand, suggesting a nonrandom sequence of receptor acquisition. The conclusion is that NK receptor fate is determined after NK cell commitment, does not require stromal presentation of human class I alleles, and is clonally stable after expression but dynamic because new receptors are acquired over time.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 196 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3