Development of Osteoclasts From Embryonic Stem Cells Through a Pathway That Is c-fms but not c-kit Dependent

Author:

Yamane Toshiyuki1,Kunisada Takahiro1,Yamazaki Hidetoshi1,Era Takumi1,Nakano Toru1,Hayashi Shin-Ichi1

Affiliation:

1. From the Department of Immunology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Japan; and the Department of Molecular Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.

Abstract

AbstractOsteoclasts are hematopoietic cells essential for bone resorption. To study the derivation of these interesting cells, we developed a stepwise culture system where stromal cells promote embryonic stem (ES) cells to differentiate into mature osteoclasts. Three phases to this differentiation process include (1) induction of hematopoiesis, along with the generation of osteoclast precursors, (2) expansion of these precursors, and (3) terminal differentiation into mature osteoclasts in the presence of 1α,25-dihydroxyvitamine D3 . Although the transition of ES cells to the hematopoietic lineage was not blocked by an antibody to c-fms, later phases were dependent on a signaling through this transmembrane receptor as indicated by the finding that anti–c-fms treatment of cells in the second and third phases reduced the number of osteoclasts produced by 75% and more than 99%, respectively. Blockade of signaling through another tyrosine kinase–type receptor, c-kit, did not affect any stages of osteoclastogenesis, although generation of other hemopoietic lineages was reduced to less than 10% of untreated. When small numbers of ES cells were directly cultured under conditions that promote osteoclast differentiation, tartrate-resistant acid phosphatase-positive multinucleated cells were observed at the edge but not inside of colonies. This suggests that some types of cell-cell interactions may inhibit development of mature osteoclasts. The culture system developed here provides an important tool for osteoclast biology.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3