Critical roles of c-Kit tyrosine residues 567 and 719 in stem cell factor–induced chemotaxis: contribution of src family kinase and PI3-kinase on calcium mobilization and cell migration

Author:

Ueda Shuji1,Mizuki Masao1,Ikeda Hirokazu1,Tsujimura Tohru1,Matsumura Itaru1,Nakano Kazushi1,Daino Hanako1,Honda Zen-ichiro1,Sonoyama Junko1,Shibayama Hirohiko1,Sugahara Hiroyuki1,Machii Takashi1,Kanakura Yuzuru1

Affiliation:

1. From the Department of Hematology and Oncology, and the Department of Microbiology, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Pathology, Hyogo College of Medicine, Hyogo, Japan; and the Department of Allergy and Rheumatology, University of Tokyo, Tokyo, Japan.

Abstract

AbstractStem cell factor (SCF) has crucial roles in proliferation, survival, and differentiation of hematopoietic stem cells and mast cells through binding to c-Kit receptor (KIT). Chemotaxis is another unique function of SCF. However, little is known about the intracellular signaling pathway of SCF/KIT-mediated cell migration. To investigate the signaling cascade, we made a series of 22 KIT mutants, in which tyrosine (Y) residue was substituted for phenylalanine (F) in the cytoplasmic domain, and introduced into BAF3 cells or 293T cells. On stimulation with SCF, BAF3 expressing KITWT(WT) showed cell migration and Ca2+ mobilization. Among 22 YF mutants, Y567F, Y569F, and Y719F showed significantly reduced cell migration and Ca2+ mobilization compared to WT. In Y567F, Lyn activation on SCF stimulation decreased and C-terminal Src kinase (Csk) suppressed KIT-mediated Ca2+ influx and cell migration, suggesting that Y567-mediated Src family kinase (SFK) activation leads to Ca2+ influx and migration. Furthermore, we found that p38 mitogen-activated protein kinase (p38 MAPK) and Erk1/2 were also regulated by Y567/SFK and involved in cell migration, and that p38 MAPK induced Ca2+ influx, thereby leading to Erk1/2 activation. In Y719F, the binding of phosphatidylinositol 3′-kinase (PI3K) to KIT was lost and KIT-mediated cell migration and Ca2+ mobilization were suppressed by PI3K chemical inhibitors or dominant-negative PI3K, suggesting the involvement of Y719-mediated PI3K pathway in cell migration. Combination of Csk and the PI3K inhibitor synergistically reduced cell migration, suggesting the cooperation of SFK and PI3K. Taken together, these results indicate that 2 major KIT signaling pathways lead to cell migration, one is Y567-SFK-p38 MAPK-Ca2+ influx-Erk and the other is Y719-PI3K-Ca2+ influx.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3