Symmetry of Initial Cell Divisions Among Primitive Hematopoietic Progenitors Is Independent of Ontogenic Age and Regulatory Molecules

Author:

Huang Shiang1,Law Ping1,Francis Karl1,Palsson Bernhard O.1,Ho Anthony D.1

Affiliation:

1. From the Departments of Medicine and Bioengineering, University of California, San Diego, CA; and the Department of Medicine V, University of Heidelberg, Heidelberg, Germany.

Abstract

We have developed a time-lapse camera system to follow the replication history and the fate of hematopoietic stem cells (HSC) at a single-cell level. Combined with single-cell culture, we correlated the early replication behavior with colony development after 14 days. The membrane dye PKH26 was used to monitor cell division. In addition to multiple, synchronous, and symmetric divisions, single-sorted CD34+/CD38− cells derived from fetal liver (FLV) also gave rise to a daughter cell that remained quiescent for up to 8 days, whereas the other daughter cell proliferated exponentially. Upon separation and replating as single cells onto medium containing a cytokine cocktail, 60.6% ± 9.8% of the initially quiescent cells (PKH26 bright) gave rise again to colonies and 15.8% ± 7.8% to blast colonies that could be replated. We have then determined the effects of various regulatory molecules on symmetry of initial cell divisions. After single-cell sorting, the CD34+/CD38− cells derived from FLV were exposed to flt3-ligand, thrombopoietin, stem cell factor (SCF), or medium containing a cytokine cocktail (with SCF, interleukin-3, interleukin-6, granulocyte-macrophage colony-stimulating factor, and erythropoietin). Whereas mitotic rate, colony efficiency, and asymmetric divisions could be altered using various regulatory molecules, the asymmetric division index, defined as the number of asymmetric divisions versus the number of dividing cells, was not altered significantly. This observation suggests that, although lineage commitment and cell proliferation can be skewed by extrinsic signaling, symmetry of early divisions is probably under the control of intrinsic factors.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Reference34 articles.

1. Clonal analysis of hematopoietic stem cell development in vivo.;Keller;Curr Top Microbiol Immunol,1992

2. Mechanisms of asymmetric cell division: Two Bs or not two Bs, that is the question.;Horvitz;Cell,1992

3. Neuroblasts: A model for the asymmetric division of stem cells.;Lin;Trends Genet,1997

4. Asymmetric cell division.;Yuh;Nature,1998

5. Cell division: Why daughters cannot be like their mothers.;Chang;Curr Biol,1996

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3