Constitutive Degradation of PML/RAR Through the Proteasome Pathway Mediates Retinoic Acid Resistance

Author:

Fanelli Mirco1,Minucci Saverio1,Gelmetti Vania1,Nervi Clara1,Gambacorti-Passerini Carlo1,Pelicci Pier Giuseppe1

Affiliation:

1. From the European Institute of Oncology, the Department of Experimental Oncology, Milan; Istituto Nazionale Tumori, Divisione Oncologia Sperimentale D, Milan; Istituto di Clinica Medica I, University of Perugia, Perugia; and Universita’ ‘La Sapienza,” Istituto di Istologia, Rome, Italy.

Abstract

Abstract PML/RAR is the leukemogenetic protein of acute promyelocytic leukemia (APL). Treatment with retinoic acid (RA) induces degradation of PML/RAR, differentiation of leukaemic blasts, and disease remission. However, RA resistance arises during RA treatment of APL patients. To investigate the phenomenon of RA resistance in APL, we generated RA-resistant sublines from APL-derived NB4 cells. The NB4.007/6 RA-resistant subline does not express the PML/RAR protein, although its mRNA is detectable at levels comparable to those of the parental cell line. In vitro degradation assays showed that the half-life of PML/RAR is less than 30 minutes in NB4.007/6 and longer than 3 hours in NB4. Treatment of NB4.007/6 cells with the proteasome inhibitors LLnL and lactacystin partially restored PML/RAR protein expression and resulted in a partial release of the RA-resistant phenotype. Similarly, forced expression of PML/RAR, but not RAR, into the NB4/007.6 cells restored sensitivity to RA treatment to levels comparable to those of the NB4 cells. These results indicate that constitutive degradation of PML/RAR protein may lead to RA resistance and that PML/RAR expression is crucial to convey RA sensitivity to APL cells.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3