Calcium Ionophore-Treated Myeloid Cells Acquire Many Dendritic Cell Characteristics Independent of Prior Differentiation State, Transformation Status, or Sensitivity to Biologic Agents

Author:

Koski Gary K.1,Schwartz Gretchen N.1,Weng David E.1,Gress Ronald E.1,Engels Friederike H.C.1,Tsokos Maria1,Czerniecki Brian J.1,Cohen Peter A.1

Affiliation:

1. From the Medicine Branch, National Cancer Institute, Laboratory of Pathology, National Cancer Institute, Bethesda, MD; and the Department of Surgery, University of Pennsylvania Medical Center, Philadelphia, PA.

Abstract

Abstract We previously reported that treatment of human peripheral blood monocytes or dendritic cells (DC) with calcium ionophore (CI) led to the rapid (18 hour) acquisition of many characteristics of mature DC, including CD83 expression. We therefore investigated whether less-mature myeloid cells were similarly susceptible to rapid CI activation. Although the promyelocytic leukemia line HL-60 was refractory to cytokine differentiation, CI treatment induced near-uniform overnight expression of CD83, CD80 (B7.1), and CD86 (B7.2), as well as additional characteristics of mature DC. Several cytokines that alone had restricted impact on HL-60 could enhance CI-induced differentiation and resultant T-cell sensitizing capacity. In parallel studies, CD34pos cells cultured from normal donor bone marrow developed marked DC-like morphology after overnight treatment with either rhCD40L or CI, but only CI simultaneously induced upregulation of CD83, CD80, and CD86. This contrasted to peripheral blood monocytes, in which such upregulation could be induced with either CI or rhCD40L treatment. We conclude that normal and transformed myeloid cells at many stages of ontogeny possess the capacity to rapidly acquire many properties of mature DC in response to CI treatment. This apparent ability to respond to calcium mobilization, even when putative signal-transducing agents are inoperative, suggests strategies for implementing host antileukemic immune responses.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3