In vivo inhibition by a site-specific catalytic RNA subunit of RNase P designed against the BCR-ABL oncogenic products: a novel approach for cancer treatment

Author:

Cobaleda C.1,Sánchez-Garcı́a I.1

Affiliation:

1. From the Department of Cell Growth and Differentiation, Institute of Microbiology and Biochemistry, CSIC/University of Salamanca, Salamanca, Spain.

Abstract

One major obstacle to the effective treatment of cancer is to distinguish between tumor cells and normal cells. The chimeric molecules created by cancer-associated chromosomal abnormalities are ideal therapeutic targets because they are unique to the disease. We describe the use of a novel approach based on the catalytic RNA subunit of RNase P to destroy specifically the tumor-specific fusion genes created as a result of chromosome abnormalities. Using as a target model the abnormal BCR-ABL p190 and p210 products, we constructed M1-RNA with guide sequences that recognized the oncogenic messengers at the fusion point (M1-p190-GS and M1-p210-GS). To test the effectiveness and the specificity of M1-p190-GS and M1-p210-GS, we studied in vitro and in vivo effects of these RNA enzymes againstBCR-ABLp190 andBCR-ABLp210, bearing in mind that both fusion genes share the ABL sequence but differ in the sequence coming from the BCR gene. We showed that M1-p190-GS and M1-p210-GS can act as sequence-specific endonucleases and can exclusively cleave target RNA that forms a base pair with the guide sequence (GS). We also demonstrated that when M1-p190-GS and M1-p210-GS were expressed in proper mammalian cell models, they abolished the effect of BCR-ABL by specifically decreasing the amount of the target BCR-ABL mRNA and preventing the function of theBCR-ABL oncogenes. These data clearly demonstrate the usefulness of the catalytic activity of M1-GS RNA to cleave specifically the chimeric molecules created by chromosomal abnormalities in human cancer and to represent a novel approach to cancer treatment.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Reference32 articles.

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3