Immobilized platelets support human colon carcinoma cell tethering, rolling, and firm adhesion under dynamic flow conditions

Author:

McCarty Owen J. T.1,Mousa Shaker A.1,Bray Paul F.1,Konstantopoulos Konstantinos1

Affiliation:

1. From the Department of Chemical Engineering, Department of Medicine, Johns Hopkins University, Baltimore, MD; DuPont Pharmaceuticals Co, Wilmington, DE.

Abstract

AbstractAccumulating evidence suggests that successful metastatic spread may depend on the ability of tumor cells to undergo extensive interactions with platelets. However, the mechanisms mediating tumor cell adhesion to platelets under conditions of flow remain largely unknown. Therefore, this study was designed to analyze the ability of 3 human colon carcinoma cell lines (LS174T, COLO205, and HCT-8) to bind to surface-anchored platelets under flow and to identify the receptors involved in these processes. Immobilized platelets support LS174T cell adhesion at wall shear stresses up to 1.4 dyn/cm2. Our data suggest that platelets primarily recruit LS174T cells through a 2-step, sequential process of adhesive interactions that shares common features but is distinct from that elaborated for neutrophils. Platelet P-selectin mediates LS174T cell tethering and rolling in a PSGL-1- and CD24-independent manner. Moreover, platelet αIIbβ3-integrins appear to be capable of directly capturing LS174T cells from the fluid stream, and also convert instantaneously transient tethers initiated by P-selectin into stable adhesion. This step is at least partially mediated by von Willebrand factor, but not fibrinogen or fibronectin, that bridges platelet αIIbβ3 with a yet unidentified receptor on the LS174T cell surface via an RGD-dependent mechanism. The sequential engagement of platelet P-selectin and αIIbβ3 is also requisite for the optimal adhesion of COLO205. Furthermore, HCT-8 cells, which fail to interact with P-selectin, tether minimally to surface-anchored platelets under flow, despite their extensive adhesive interactions under static conditions. This cascade of events depicts an efficacious process for colon carcinoma arrest at sites of vascular injury.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Reference47 articles.

1. Antimetastatic effects associated with platelet reduction.;Gasic;Proc Natl Acad Sci U S A.,1968

2. Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo.;Karpatkin;J Clin Invest.,1988

3. Early presence of activated (“exhausted”) platelets in malignant tumors (breast adenocarcinoma and malignant melanoma).;Mannucci;Eur J Cancer Clin Oncol.,1989

4. Platelets and cancer metastasis.;Honn;Cancer and Metastasis Rev.,1992

5. Lysis of tumor cells by natural killer cells in mice is impeded by platelets.;Nieswandt;Cancer Res.,1999

Cited by 160 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3