Affiliation:
1. From the Howard Hughes Medical Institute, Indiana University School of Medicine; and the Section of Pediatric Hematology/Oncology, Herman B Wells Center for Pediatric Research, James Whitcomb Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN.
Abstract
AbstractMutations of the receptor tyrosine kinase c-kit or its ligand stem cell factor (SCF), which is encoded as a soluble and membrane-associated protein by the Steel gene in mice, lead to deficiencies of germ cells, melanocytes, and hematopoiesis, including the erythroid lineage. In the present study, we have used genetic methods to study the role of membrane or soluble presentation of SCF in hematopoiesis. Bone marrow–derived stromal cells expressing only a membrane-restricted (MR) isoform of SCF induced an elevated and sustained tyrosine phosphorylation of both c-kit and erythropoietin receptor (EPO-R) and significantly greater proliferation of an erythrocytic progenitor cell line compared with stromal cells expressing soluble SCF. Transgene expression of MR-SCF inSteel-dickie (Sld) mutants resulted in a significant improvement in the production of red blood cells, bone marrow hypoplasia, and runting. In contrast, overexpression of the full-length soluble form of SCF transgene had no effect on either red blood cell production or runting but corrected the myeloid progenitor cell deficiency seen in these mutants. These data provide the first evidence of differential functions of SCF isoforms in vivo and suggest an abnormal signaling mechanism as the cause of the severe anemia seen in mutants of the Sl gene.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献