Sickle Cell Acute Chest Syndrome: Pathogenesis and Rationale for Treatment

Author:

Stuart Marie J.1,Setty B.N. Yamaja1

Affiliation:

1. From the Department of Pediatrics and the Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA.

Abstract

AbstractAcute chest syndrome (ACS) is a leading cause of death in sickle cell disease (SCD). Our previous work showed that hypoxia enhances the ability of sickle erythrocytes to adhere to human microvessel endothelium via interaction between very late activation antigen-4 (VLA4) expressed on sickle erythrocytes and the endothelial adhesion molecule vascular cell adhesion molecule-1 (VCAM-1). Additionally, hypoxia has been shown to decrease the production of nitric oxide (NO) which inhibits VCAM-1 upregulation. Based on these observations, we hypothesize that during ACS, the rapidly progressive clinical course that can occur is caused by initial hypoxia-induced pulmonary endothelial VCAM-1 upregulation that is not counterbalanced by production of cytoprotective mediators, including NO, resulting in intrapulmonary adhesion. We assessed plasma NO metabolites and soluble VCAM-1 in 36 patients with SCD and 23 age-matched controls. Patients with SCD were evaluated at baseline (n = 36), in vaso-occlusive crisis (VOC; n = 12), and during ACS (n = 7). We observed marked upregulation of VCAM-1 during ACS (1,290 ± 451 ng per mL; mean ± 1 SD) with values significantly higher than controls (P < .0001) or patients either in steady state or VOC (P < .01). NO metabolites were concomitantly decreased during ACS (9.2 ± 1.5 nmol/mL) with values lower than controls (22.2 ± 5.5), patients during steady state (21.4 ± 5.5), or VOC (14.2 ± 1.2) (P< .0001). Additionally, the ratio of soluble VCAM-1 to NO metabolites during ACS (132.9 ± 46.5) was significantly higher when compared with controls (P < .0001) or patients either in steady state or VOC (P < .0001). Although hypoxia enhanced in vitro sickle erythrocyte-pulmonary microvessel adhesion, NO donors inhibited this process with concomitant inhibition of VCAM-1. We suggest that in ACS there is pathologic over expression of endothelial VCAM-1. Our investigations also provide a rationale for the therapeutic use in ACS of cytoprotective modulators including NO and dexamethasone, which potentially exert their efficacy by an inhibitory effect on VCAM-1 and concomitant inhibition of sickle erythrocyte-endothelial adhesion.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Reference35 articles.

1. Sickle cell anemia, a molecular disease.;Pauling;Science,1949

2. Acute chest syndrome in sickle cell disease: Clinical presentation and course.;Vichinsky;Blood,1997

3. Sickle cell disease.;Serjeant;Lancet,1997

4. Acute pulmonary complications of sickle cell disease;Carache,1982

5. Acute chest syndrome in sickle cell disease.;Davies;Lancet,1984

Cited by 109 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3