CD9 and megakaryocyte differentiation

Author:

Clay Denis1,Rubinstein Eric1,Mishal Zohair1,Anjo Aurora1,Prenant Michel1,Jasmin Claude1,Boucheix Claude1,Bousse-Kerdilès Marie-Caroline Le1

Affiliation:

1. From INSERM U268 and Service Commun de Cytométrie; Institut André LWOFF and Laboratoire de Microscopie Electronique du service d'Anatomopathologie; Hôpital Paul Brousse, Villejuif, France.

Abstract

AbstractIt is shown that the tetraspanin CD9 has a complex pattern of distribution in hematopoietic cells and is heterogeneously expressed on human bone marrow CD34+ cells. CD34highCD38lowThy1+ primitive progenitors are contained in the population with intermediate CD9 expression, thus suggesting that CD9 expression may precede CD38 appearance. Cell sorting shows that colony-forming unit (CFU)-GEMM and CFU-GM are present in high proportions in this fraction and in the fraction with the lowest CD9 expression. Cells with the highest level of CD9 are committed to the B-lymphoid or megakaryocytic (MK) lineages, as shown by the co-expression of either CD19 or CD41/GPIIb and by their strong potential to give rise to CFU-MK. In liquid cultures, CD9highCD41neg cells give rise to cells with high CD41 expression as early as 2 days, and this was delayed by at least 3 to 4 days for the CD9mid cells; few CD41high cells could be detected in the CD9lowcell culture, even after 6 days. Antibody ligation of cell surface CD9 increased the number of human CFU-MK progenitors and reduced the production of CD41+ megakaryocytic cells in liquid culture. This was associated with a decreased expression of MK differentiation antigens and with an alteration of the membrane structure of MK cells. Altogether these data show a precise regulation of CD9 during hematopoiesis and suggest a role for this molecule in megakaryocytic differentiation, possibly by participation in membrane remodeling.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3