SH2 domain–mediated targeting, but not localization, of Syk in the plasma membrane is critical for FcεRI signaling

Author:

Sada Kiyonao1,Zhang Juan1,Siraganian Reuben P.1

Affiliation:

1. From the Receptors and Signal Transduction Section, Oral Infection and Immunity Branch, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD

Abstract

Aggregation of the high-affinity IgE receptor induces the tyrosine phosphorylation of subunits of the receptor and the subsequent association with the receptor of the cytosolic protein tyrosine kinase Syk. The current experiments examined the functional importance of membrane association of Syk and the role of the SH2 domain in receptor-mediated signal transduction. Wild-type Syk and chimeric Syk molecules with the c-Src myristylation sequence at the amino-terminus were expressed in a Syk-negative mast cell line. Chimeric Syk with the myristylation sequence was membrane associated, and a small fraction was constitutively colocalized with FcεRI, Lyn, and LAT (linker for T-cell activation) in the glycolipid-enriched microdomains or rafts. However, even under these conditions, the tyrosine phosphorylation of Syk and the downstream propagation of signals required FcεRI aggregation. This chimeric Syk was less active than wild-type Syk in FcεRI-mediated signal transduction. In contrast, a truncated membrane-associated form of Syk that lacked the SH2 domains was not tyrosine phosphorylated by receptor aggregation and failed to transduce intracellular signals. These findings suggest that SH2 domain–mediated membrane translocation of Syk is essential for the FcεRI-mediated activation of Syk for downstream signaling events leading to histamine release. Furthermore, the localization of Syk in glycolipid-enriched microdomains by itself is not enough to generate or enhance signaling events.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3