Fas Ligand Is Present in Human Erythroid Colony-Forming Cells and Interacts With Fas Induced by Interferon γ to Produce Erythroid Cell Apoptosis

Author:

Dai Chun-Hua1,Price James O.1,Brunner Thomas1,Krantz Sanford B.1

Affiliation:

1. From the Hematology Division, Department of Medicine and Department of Pathology, Department of Veterans Affairs Medical Center (DVAMC) and Vanderbilt University School of Medicine, Nashville, TN; and the Division of Cellular Immunology, La Jolla Institute for Allergy and Immunology, San Diego, CA.

Abstract

AbstractInterferon γ (IFNγ) inhibits the growth and differentiation of highly purified human erythroid colony-forming cells (ECFCs) and induces erythroblast apoptosis. These effects are dose- and time-dependent. Because the cell surface receptor known as Fas (APO-1; CD95) triggers programmed cell death after activation by its ligand and because incubation of human ECFCs with IFNγ produces apoptosis, we have investigated the expression and function of Fas and Fas ligand (FasL) in highly purified human ECFCs before and after incubation with IFNγ in vitro. Only a small percentage of normal human ECFCs express Fas and this is present at a low level as detected by Northern blotting for the Fas mRNA and flow cytometric analysis of Fas protein using a specific mouse monoclonal antibody. The addition of IFNγ markedly increased the percentage of cells expressing Fas on the surface of the ECFCs as well as the intensity of Fas expression. Fas mRNA was increased by 6 hours, whereas Fas antigen on the cell surface increased by 24 hours, with a plateau at 72 hours. This increase correlated with the inhibitory effect of IFNγ on ECFC proliferation. CH-11 anti-Fas antibody, which mimics the action of the natural FasL, greatly enhanced IFNγ-mediated suppression of cell growth and production of apoptosis, indicating that Fas is functional. Expression of FasL was also demonstrated in normal ECFCs by reverse transcriptase-polymerase chain reaction and flow cytometric analysis with specific monoclonal antibody. FasL was constitutively expressed among erythroid progenitors as they matured from day 5 to day 8 and IFNγ treatment did not change this expression. Apoptosis induced by IFNγ was greatly reduced by the NOK-2 antihuman FasL antibody and an engineered soluble FasL receptor, Fas-Fc, suggesting that Fas-FasL interactions among the ECFCs produce the erythroid inhibitory effects and apoptosis initiated by IFNγ.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Reference45 articles.

1. The interferon system.;Sen;J Biol Chem,1992

2. Interferon is the suppresser of hematopoiesis generated by stimulated lymphocytes in vitro.;Zoumbos;J Immunol,1984

3. Gamma interferon (IFNγ) and IFNα/β suppress murine myeloid colony formation (CFU-C): Magnitude of suppression is dependent upon level of colony-stimulating factor (CSF).;Klimpel;J Immunol,1982

4. Interferon-gamma inhibits proliferation, but not commitment, of murine granulocyte-macrophage progenitors.;Koike;J Cell Physiol,1992

5. Suppression of normal human erythropoiesis by gamma interferon in vitro: Role of monocytes and T-lymphocytes.;Mamus;J Clin Invest,1985

Cited by 142 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3