Induction of Decay-Accelerating Factor by Cytokines or the Membrane-Attack Complex Protects Vascular Endothelial Cells Against Complement Deposition

Author:

Mason Justin C.1,Yarwood Helen1,Sugars Katharine1,Morgan B. Paul1,Davies Kevin A.1,Haskard Dorian O.1

Affiliation:

1. From the British Heart Foundation (BHF) Cardiovascular Medicine Unit, National Heart and Lung Institute, and the Rheumatology Unit, Division of Medicine, Imperial College School of Technology and Medicine, Hammersmith Hospital, London; and the Department of Medical Biochemistry, University of Wales College of Medicine, Cardiff, UK.

Abstract

AbstractVascular endothelium is continuously exposed to complement-mediated challenge, and this is enhanced during inflammation. Although the complement-regulatory proteins decay-accelerating factor (DAF), CD59, and membrane cofactor protein (MCP) protect endothelial cells (ECs) against complement-mediated injury, the control of their expression and relative contributions to vascular protection is unclear. We explored the hypothesis that mechanisms exist which induce upregulation of complement-regulatory proteins on ECs to maintain vascular function in inflammation. Tumor necrosis factor alpha (TNF) and interferon gamma (IFNγ) each increased DAF expression but not CD59 or MCP expression, and a combination of these cytokines was more potent than either alone. Cytokine-induced expression depended on increased DAF mRNA and de novo protein synthesis and was maximal by 72 hours. In addition, assembly of the membrane-attack complex (MAC) on ECs induced a 3-fold increase in DAF expression, and this was enhanced by cytokines. DAF upregulation was not inhibited by protein kinase C (PKC) antagonists. The increase in DAF was functionally relevant since it reduced complement 3 (C3) deposition by 40%, and this was inhibited by an anti-DAF monoclonal antibody. These observations indicate that upregulation of DAF expression by cytokines or MAC may represent an important feedback mechanism to maintain the integrity of the microvasculature during subacute and chronic inflammatory processes involving complement activation.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3