Cyclophosphamide/granulocyte colony-stimulating factor causes selective mobilization of bone marrow hematopoietic stem cells into the blood after M phase of the cell cycle

Author:

Wright Douglas E.1,Cheshier Samuel H.1,Wagers Amy J.1,Randall Troy D.1,Christensen Julie L.1,Weissman Irving L.1

Affiliation:

1. From the Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, California.

Abstract

Abstract Cytokine-mobilized peripheral blood hematopoietic stem cells (MPB HSC) are widely used for transplantation in the treatment of malignancies, but the mechanism of HSC mobilization is unclear. Although many HSC in bone marrow (BM) cycle rapidly and expand their numbers in response to cytoreductive agents, such as cyclophosphamide (CY), and cytokines, such as granulocyte colony-stimulating factor (G-CSF), MPB HSC are almost all in the G0 or G1phase of the cell cycle. This has raised the question of whether a subset of noncycling BM HSC is selectively released, or whether cycling BM HSC are mobilized after M phase, but before the next S phase of the cell cycle. To distinguish between these possibilities, mice were treated with one dose of CY followed by daily doses of G-CSF, and dividing cells were marked by administration of bromodeoxyuridine (BrdU) during the interval that BM HSC are expanding. After CY and 4 days of G-CSF, 98.5% of the 2n DNA content long-term repopulating MPB (LT)-HSC stained positively for BrdU, and therefore derived from cells that divided during the treatment interval. Next, LT-HSC from mice previously treated with a single dose of CY, which kills cycling cells, and 3 daily doses of G-CSF, were nearly all killed by a second dose of CY, suggesting that CY/G-CSF causes virtually all LT-HSC to cycle. Analysis of cyclin D2 messenger RNA (mRNA) expression and total RNA content of MPB HSC suggests that these cells are mostly in G1 phase. After CY/G-CSF treatment, virtually all BM LT-HSC enter the cell cycle; some of these HSC then migrate into the blood, specifically after M phase, and are rapidly recruited to particular hematopoietic organs.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3