Expansion of human cord blood CD34+CD38−cells in ex vivo culture during retroviral transduction without a corresponding increase in SCID repopulating cell (SRC) frequency: dissociation of SRC phenotype and function

Author:

Dorrell Craig1,Gan Olga I.1,Pereira Daniel S.1,Hawley Robert G.1,Dick John E.1

Affiliation:

1. From Programs in Cancer/Blood and Developmental Biology, Hospital for Sick Children; Department of Molecular and Medical Genetics, University of Toronto; and The Toronto Hospital, Toronto, Ontario, Canada.

Abstract

Abstract Current procedures for the genetic manipulation of hematopoietic stem cells are relatively inefficient due, in part, to a poor understanding of the conditions for ex vivo maintenance or expansion of stem cells. We report improvements in the retroviral transduction of human stem cells based on the SCID-repopulating cell (SRC) assay and analysis of Lin− CD34+CD38−cells as a surrogate measure of stem cell function. Based on our earlier study of the conditions required for ex vivo expansion of Lin−CD34+ CD38− cells and SRC, CD34+–enriched lineage–depleted umbilical cord blood cells were cultured for 2 to 6 days on fibronectin fragment in MGIN (MSCV-EGFP-Neo) retroviral supernatant (containing 1.5% fetal bovine serum) and IL-6, SCF, Flt-3 ligand, and G-CSF. Both CD34+CD38− cells (20.8%) and CFC (26.3%) were efficiently marked. When the bone marrow of engrafted NOD/SCID mice was examined, 75% (12/16) contained multilineage (myeloid and B lymphoid) EGFP+ human cells composing as much as 59% of the graft. Half of these mice received a limiting dose of SRC, suggesting that the marked cells were derived from a single transduced SRC. Surprisingly, these culture conditions produced a large expansion (166-fold) of cells with the CD34+CD38− phenotype (n = 20). However, there was no increase in SRC numbers, indicating dissociation between the CD34+CD38− phenotype and SRC function. The underlying mechanism involved apparent downregulation of CD38 expression within a population of cultured CD34+CD38+ cells that no longer contained any SRC function. These results suggest that the relationship between stem cell function and cell surface phenotype may not be reliable for cultured cells. (Blood. 2000;95:102-110)

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3