Fever-range hyperthermia dynamically regulates lymphocyte delivery to high endothelial venules

Author:

Evans Sharon S.1,Wang Wan-Chao1,Bain Mark D.1,Burd Randy1,Ostberg Julie R.1,Repasky Elizabeth A.1

Affiliation:

1. From the Department of Immunology, Roswell Park Cancer Institute, Carlton and Elm Streets, Buffalo, NY.

Abstract

Abstract Fever is associated with increased survival during acute infection, although its mechanism of action is largely unknown. This study found evidence of an unexpectedly integrated mechanism by which fever-range temperatures stimulate lymphocyte homing to secondary lymphoid tissues by increasing L-selectin and α4β7 integrin–dependent adhesive interactions between circulating lymphocytes and specialized high endothelial venules (HEV). Exposure of splenic lymphocytes in vivo to fever-like whole-body hyperthermia (WBH; 39.8 ± 0.2°C for 6 hours) stimulated both L-selectin and α4β7 integrin–dependent adhesion of lymphocytes to HEV under shear conditions in lymph nodes and Peyer patches. The adhesiveness of HEV ligands for L-selectin and α4β7 integrin (ie, peripheral lymph node addressin and mucosal addressin cell adhesion molecule-1) also increased during WBH or febrile responses associated with lipopolysaccharide-induced or turpentine-induced inflammation. Similar increases in HEV adhesion occurred during hyperthermia treatment of lymph node and Peyer patch organ cultures in vitro, indicating that the local lymphoid tissue microenvironment is sufficient for the hyperthermia response. In contrast, WBH did not augment adhesion in squamous endothelium of nonlymphoid tissues. Analysis of homing of α4β7hi L-selectinlo murine TK1 cells and L-selectinhi α4β7 integrin-negative 300.19/L-selectin transfectant cells showed that fever-range temperatures caused a 3- to 4-fold increase in L-selectin and α4β7 integrin–dependent trafficking to secondary lymphoid tissues. Thus, enhanced lymphocyte delivery to HEV by febrile temperatures through bimodal regulation of lymphocyte and endothelial adhesion provides a novel mechanism to promote immune surveillance.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3