Affiliation:
1. From The Burnham Institute, La Jolla, CA, and Department of Immunology, Erasmus University, Rotterdam, Netherlands.
Abstract
Abstract
Mice homozygous for the disruption of the PU.1 (Spi-1) gene do not produce mature macrophages. In determining the role of PU.1 in macrophage differentiation, the present study investigated whether or not there was commitment to the monocytic lineage in the absence of PU.1. Early PU.1−/− myeloid colonies were generated from neonate liver under conditions that promote primarily macrophage and granulocyte/macrophage colonies. These PU.1−/− colonies were found to contain cells with monocytic characteristics as determined by nonspecific esterase stain and the use of monoclonal antibodies that recognize early monocyte precursors, including Moma-2, ER-MP12, ER-MP20, and ER-MP58. In addition, early myeloid cells could be grown from PU.1−/− fetal liver cultures in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF). Similar to the PU.1 null colonies, the GM-CSF–dependent cells also possessed early monocytic characteristics, including the ability to phagocytize latex beads. The ability of PU.1−/− progenitors to commit to the monocytic lineage was also verified in vivo by flow cytometry and cytochemical analysis of primary neonate liver cells. The combined data shows that PU.1 is absolutely required for macrophage development after commitment to this lineage.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献