Amino Acids Responsible for Decreased 2, 3-Biphosphosphoglycerate Binding to Fetal Hemoglobin

Author:

Adachi Kazuhiko1,Konitzer Patrick1,Pang Jian1,Reddy Konda S.1,Surrey Saul1

Affiliation:

1. From the The Children's Hospital of Philadelphia, Division of Hematology, University of Pennsylvania School of Medicine, Philadelphia, PA; the Department of Biophysics, University of Pennsylvania, Philadelphia, PA; the Departments of Pediatrics and Research, the duPont Hospital for Children, Wilmington, DE; and the Department of Pediatrics, Jefferson Medical College, Philadelphia, PA.

Abstract

AbstractTo clarify the role of γN-terminal Gly, γ5 Glu, and γ143 Ser in 2, 3-biphosphosphoglycerate (BPG) binding to fetal hemoglobin (Hb F ), we engineered and produced normal human Hb F and two Hb F variants (Hb F γG1V, γS143H, and Hb F γG1V, γE5P, γS143H) using a yeast expression system and then compared their oxygen-binding properties with those of native human Hb F and adult Hb (Hb A). Oxygen affinity of Hb F γG1V, γS143H in the absence of 2, 3-BPG was slightly higher than that of normal Hb F. The decrease in oxygen affinities for Hb F γG1V, γS143H with increasing 2, 3-BPG concentrations was larger than that of normal Hb F, but significantly less than that of Hb A. In contrast, oxygen affinities of Hb F γG1V, γE5P, γS143H in the absence and presence of 2, 3-BPG were much lower than those of Hb F γG1V, γS143H and were similar to those of Hb A. These results indicate that differences between Pro and Glu at the A2 position in the A helix in Hb A and Hb F, respectively, are critical for reduced binding of 2, 3-BPG to Hb F, even though β5 Pro does not interact directly with 2, 3-BPG in Hb A. Hb F variants such as Hb F γG1V, γE5P, γS143H, which exhibit reduced oxygen affinity, should facilitate design of efficient antisickling fetal Hb variants for potential use in gene therapy for sickle cell disease.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3