Affiliation:
1. From The Second Department of Internal Medicine, Osaka University Medical School, Osaka, Japan; the Department of Blood Transfusion, Osaka University Hospital, Osaka, Japan; the Department of Clinical Pathology, Tokyo Medical College, Tokyo, Japan; and the Department of Cardiovascular Research, The Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
Abstract
AbstractTo clarify a molecular defect responsible for moderate IIbβ3 deficiency, we examined two unrelated patients, MT and MS, suffering from type II and type I Glanzmann thrombasthenia (GT), respectively. Sequence analysis of polymerase chain reaction (PCR) fragments derived from platelet mRNA showed a single A→C substitution at nucleotide (nt) 2334 leading to a Gln747→ Pro in IIb in both patients. Allele-specific restriction enzyme analysis (ASRA) of genomic DNA demonstrated that patient MT was homozygous for the Gln747→Pro substitution and patient MS was compound heterozygous for this substitution and for an RNA splice mutation at the consensus sequence of the splice acceptor site of exon 18 (AG→AA). Furthermore, ASRA showed that, among 17 unrelated Japanese GT patients, this Gln747→Pro substitution was detected in 4 patients, including MT and MS (homozygous, 2 patients; heterozygous, 2 patients). Cotransfection of Pro747IIb and β3 constructs into 293 cells resulted in moderate reduction in the amount of IIbβ3 within the transfected cells as well as on the cell surface. However, Pro747IIbβ3 bound the ligand mimetic monoclonal antibody (MoAb) PAC-1 after activation of IIbβ3 by the MoAb PT25-2, suggesting that the mutant IIbβ3 possesses the ligand-binding function. The association between the mutant proIIb and β3 was not disturbed. Surface labeling and pulse chase study showed that the Gln747→Pro substitution moderately impaired both intracellular transport of the IIbβ3 heterodimers to the Golgi apparatus and endoproteolytic cleavage of proIIb into heavy and light chains. By contrast, replacement of Gln747 with Ala by mutagenesis did not impair IIbβ3expression on the cell surface. These results suggest that the presence of Pro, rather than the absence of Gln, at amino acid residue 747 on IIb is responsible for moderate IIbβ3 deficiency.© 1998 by The American Society of Hematology.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献