Human lymphokine activated killer (LAK) cells suppress generation of allospecific cytotoxic T cells: implications for use of LAK cells to prevent graft-versus-host disease in allogeneic bone marrow transplantation

Author:

Uberti J1,Martilotti F1,Chou TH1,Kaplan J1

Affiliation:

1. Department of Medicine, Wayne State University School of Medicine, Detroit, MI.

Abstract

We have found that murine lymphokine activated killer (LAK) cells have veto and natural suppressor activities in vitro, and prevent graft- versus-host disease (GVHD) in vivo. To determine whether human LAK cells mediate veto and natural suppression we measured their ability to inhibit generation of allospecific cytotoxic T cells (CTL) in mixed lymphocyte culture (MLC). When added to MLCs at low concentrations LAK cells caused veto-type inhibition: stimulator-type LAK cells inhibited generation of CTL but responder or third-party LAK cells did not. At higher concentrations LAK cells caused nonspecific inhibition: all three LAK cell types inhibited generation of CTL. LAK cell veto and natural suppressor activities were largely eliminated by irradiation with 30 Gy and by depletion of CD56+ cells, but increased after depletion of CD3+ cells. LAK cell veto activity is not likely an artifact of cold-target inhibition by the LAK cells themselves or by proliferation of T cells contaminating LAK cell preparations: (1) veto only occurred when LAK cells were added to MLC on days 0 through 2, but not when added on day 5; (2) addition of saturating numbers of labeled targets to fixed numbers of allo-CTL effectors failed to overcome the inhibitory effects of adding stimulator-type LAK cells at the onset of MLC; and (3) CD3-depleted LAK cells showed greater veto activity than threefold greater numbers of control LAK cells. In light of our previous findings in mice, the current results imply that adoptive immunotherapy with LAK cells may be useful in preventing GVHD in human bone marrow transplant recipients.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3