Differentiation of a human eosinophilic leukemia cell line (EoL-1) by a human T-cell leukemia cell line (HIL-3)-derived factor

Author:

Morita M1,Saito H1,Honjo T1,Saito Y1,Tsuruta S1,Kim KM1,Tanaka M1,Mori KJ1,Mayumi M1,Mikawa H1

Affiliation:

1. Department of Pediatrics, Faculty of Medicine, Kyoto University, Japan.

Abstract

Differentiation of a human eosinophilic leukemia cell line, EoL-1, induced by the culture supernatant of a human ATL cell line, HIL-3 (HIL- 3 sup) was compared with differentiation induced by defined cytokines. HIL-3 sup induced EoL-1 cells to express eosinophilic granules and segmented nuclei after 6 to 9 days of incubation. HIL-3 sup also induced the expression of Fc epsilon receptor II (Fc epsilon RII/CD23) and an eosinophil differentiation antigen EO-1 mainly on eosinophilic granule (+) cells. Furthermore, HIL-3 sup induced EoL-1 cells to respond to an eosinophil chemotactic factor, platelet activating factor. HIL-3 cells express messenger RNA (mRNA) of interleukin-5 (IL- 5), macrophage colony-stimulating factor (M-CSF), and IL-3 but not granulocyte CSF (G-CSF). Granulocyte-macrophage CSF (GM-CSF) and tumor necrosis factor-alpha (TNF-alpha) were detected in the HIL-3 sup. Recombinant IL-2 (rIL-2), rIL-3, rIL-4, rIL-5, rM-CSF, and rGM-CSF did not induce eosinophilic granules. rG-CSF induced a few eosinophilic granule (+) cells, and TNF-alpha, which did not induce eosinophilic granules by itself, enhanced the ability of G-CSF to induce them. However, G-CSF and TNF-alpha did not induce the expression of Fc epsilon RII and EO-1 antigen. Moreover, anti-G-CSF, anti-TNF-alpha, anti-GM-CSF, anti-IL-3, and anti-IL-5 antibodies did not suppress the effect of HIL-3 sup on the differentiation of EoL-1 cells. All the data suggest that HIL-3 sup contains an unidentified factor that induces differentiation of EoL-1 cells, and that EoL-1 cells and HIL-3 sup provide an important model for the examination of differentiation mechanisms and functions of eosinophils.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3