Degradation of Membrane Phospholipids and Thiols in Peroxide Hemolysis: Studies in Vitamin E Deficiency

Author:

JACOB HARRY S.123,LUX SAMUEL E.123

Affiliation:

1. St. Elizabeth’s Hospital and Tufts University Medical School, Boston, Mass.

2. Section of Hematology, University of Minnesota Medical School, Minneapolis, Minn.

3. Intern, Children's Hospital Medical Center, Boston, Mass.

Abstract

Abstract To understand more clearly the hemolytic anemia associated with administration of certain oxidant drugs, the mechanism by which H2O2 causes hemolysis in rat red cells, deficient in vitamin E was investigated. It was demonstrated that the locus of attack by H2O2 was the red cell membrane, in which one phospholipid, i.e., phosphatidyl ethanolamine, was specifically destroyed prior to the onset of hemolysis. No perturbation of intracellular components or metabolism was noted during peroxidative hemolysis. E-deficient red cells incorporated 14C-labelled fatty acids into this phosphatide at nearly twice the rate that in E-supplemented cells, reflecting the continual tendency of phosphatidyl ethanolamine to be destroyed. Young red cells were especially active in this regard and concomitantly were less vulnerable to damage by H2O2 both in vitro and when circulating in rats exposed to hyperbaric oxygenation. If, however, replacement of fatty acids in phosphatidyl ethanolamine was prevented by inhibition of metabolism or if fatty acids were enzymatically removed by a phospholipase-A, H2O2 hemolysis was potentiated. Hemolysis was also associated with, and potentiated by, loss of membrane sulfhydryl activity. It is suggested that hemolytic anemia may occur in patients with vitamin E deficiency (i.e., with steatorrhea) if oxidant drugs capable of generating H2O2 and oxidizing membrane thiols are administered. Two such cases are under investigation.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3