Macrophage metabolic rewiring improves heme-suppressed efferocytosis and tissue damage in sickle cell disease

Author:

Sharma Richa1,Antypiuk Ada2ORCID,Vance S. Zebulon2,Manwani Deepa3,Pearce Quentinn4,Cox James Eric4ORCID,An Xiuli2,Yazdanbakhsh Karina1,Vinchi Francesca1

Affiliation:

1. United States

2. New York Blood Center, New York, New York, United States

3. Albert Einstein College of Medicine, New York, New York, United States

4. University of Utah, Salt Lake City, Utah, United States

Abstract

Sickle cell disease (SCD) is hallmarked by an underlying chronic inflammatory condition, which is contributed by heme-activated pro-inflammatory macrophages. While previous studies addressed heme ability to stimulate macrophage inflammatory skewing through TLR4/ROS signaling, how heme alters cell functional properties remains unexplored. Macrophage-mediated immune cell recruitment and apoptotic cell (AC) clearance are relevant in the context of SCD, where tissue damage, cell apoptosis and inflammation occur due to vasoocclusive episodes, hypoxia and ischemic injury. Here we show that heme strongly alters macrophage functional response to AC damage by exacerbating immune cell recruitment and impairing cell efferocytic capacity. In SCD, heme-driven excessive leukocyte influx and defective efferocytosis contribute to exacerbated tissue damage and sustained inflammation. Mechanistically, these events depend on heme-mediated activation of TLR4 signaling and suppression of the transcription factor PPARg and its coactivator PGC1a. These changes reduce efferocytic receptor expression and promote mitochondrial remodeling, resulting in a coordinated functional and metabolic reprogramming of macrophages. Overall, this results in limited AC engulfment, impaired metabolic shift to mitochondrial fatty acid b-oxidation and ultimately reduced secretion of the anti-inflammatory cytokines IL-4 and IL-10, with consequent inhibition of continual efferocytosis, resolution of inflammation and tissue repair. We further demonstrate that impaired phagocytic capacity is recapitulated by macrophage exposure to sickle patients'plasma and improved by hemopexin-mediated heme scavenging, PPARg agonists or IL-4 exposure through functional and metabolic macrophage rewiring. Our data indicate that therapeutic improvement of heme-altered macrophage functional properties via heme scavenging or PGC1a/PPARg modulation significantly ameliorate tissue damage associated with SCD pathophysiology.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3