Megakaryocyte-induced contraction of plasma clots: Cellular mechanisms and structural mechanobiology

Author:

Kim Oleg V.1ORCID,Litvinov Rustem I2ORCID,Gagne Alyssa L3,French Deborah L4ORCID,Brass Lawrence F.2,Weisel John W.2

Affiliation:

1. University of Pennsylvania/Virginia Tech, Philadelphia, Pennsylvania, United States

2. University of Pennsylvania, Philadelphia, Pennsylvania, United States

3. The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States

4. Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States

Abstract

Non-muscle cell contractility is an essential feature underlying diverse cellular processes such as motility, morphogenesis, division and genome replication, intracellular transport, and secretion. Blood clot contraction is a well-studied process driven by contracting platelets. Megakaryocytes, which are the precursors to platelets, can be found in the bone marrow and in the lungs. Although they express many of the same proteins and structures found in platelets, little is known about their ability to engage with extracellular proteins such as fibrin and contract. Here we have measured the ability of megakaryocytes to compress plasma clots. Megakaryocytes derived from human induced pluripotent stem cells (iMKs) were suspended in human platelet-free blood plasma and stimulated with thrombin. Using real-time macroscale optical tracking, confocal microscopy, and biomechanical measurements, we found that activated iMKs caused macroscopic volumetric clot shrinkage, as well as densification and stiffening of the fibrin network via fibrin-attached plasma membrane protrusions undergoing extension-retraction cycles that cause shortening and bending of fibrin fibers. Contraction induced by iMKs involved two kinetic phases with distinct rates and durations. It was suppressed by inhibitors of non-muscle myosin IIA, actin polymerization, and integrin αIIbβ3-fibrin interactions, indicating that the molecular mechanisms of iMK contractility were similar or identical to those in activated platelets. Our findings provide new insights into megakaryocyte biomechanics and suggest that iMKs can be used as a model system to study platelet contractility. Physiologically, the ability of MKs to contract plasma clots may play a role in the mechanical remodeling of intravascular blood clots and thrombi.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3