Novel human cellular model of CDA IV enables comprehensive analysis revealing molecular basis of disease phenotype

Author:

Ferrer-Vicens Ivan1ORCID,Ferguson Daniel C. J.1,Wilson Marieangela C1,Heesom Kate J1ORCID,Bieker James J2,Frayne Jan1ORCID

Affiliation:

1. University of Bristol, Bristol, United Kingdom

2. Mount Sinai School of Medicine, New York, New York, United States

Abstract

Red blood cell disorders can result in severe anemia. One such disease, congenital dyserythropoietic anemia IV (CDA IV) is caused by heterozygous mutation E325K in the transcription factor KLF1. However, studying the molecular basis of CDA IV is severely impeded by paucity of suitable and adequate quantities of material from anaemic patients and rarity of the disease. We therefore took a novel approach, creating a human cellular disease model system for CDA IV, which accurately recapitulates the disease phenotype. Next, using comparative proteomics we reveal extensive distortion of the proteome and a wide range of disordered biological processes in CDA IV erythroid cells. These include down-regulated pathways governing cell cycle, chromatin separation, DNA repair, cytokinesis, membrane trafficking and global transcription, and upregulated networks governing mitochondria biogenesis. The diversity of such pathways elucidates the spectrum of phenotypic abnormalities that occur with CDA IV and impairment to erythroid cell development and survival, collectively explaining the CDA IV disease phenotype. The data also reveal far more extensive involvement of KLF1 in previously assigned biological processes, along with novel roles in the regulation of intracellular processes not previously attributed to this transcription factor. Overall, the data demonstrate the power of such a model cellular system to unravel the molecular basis of disease and how studying effects of a rare mutation can reveal fundamental biology.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3