Affiliation:
1. University of Cambridge, Cambridge, United Kingdom
2. Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
3. Royal Marsden Hospital, London, United Kingdom
Abstract
GPR34 translocation and mutation are specifically associated with salivary gland MALT lymphoma (SG-MALT-Lymphoma). Majority of GPR34 mutations are clustered in its C-terminus, resulting in truncated proteins lacking the phosphorylation motif important for receptor desensitization. It is unclear why GPR34 genetic changes associate with SG-MALT-Lymphoma and how these mutations contribute to the lymphoma development. We generated isogenic Flp-InTRex293 cell lines that stably expressed a single copy of GPR34 or its various mutants, and performed a range of in vitro assays. We showed that the GPR34 Q340X truncation, but not R84H and D151A mutants conferred a significantly increased resistance to apoptosis, and greater transforming potential than the GPR34 wild type. The GPR34 truncation mutant had a significantly delayed internalization than the wild type following ligand (lysophosphatidylserine) stimulation. Among 9 signaling pathways examined, the GPR34 Q340X truncation, to a lesser extent the D151A mutant, significantly activated CRE, NFkB and AP1 reporter activities, particularly in the presence of ligand stimulation. We further demonstrated enhanced activities of phospholipase-A1/2 in the culture supernatant of Flp-InTRex293 cells that expressed the GPR34 Q340X mutant, and their potential to catalyze the synthesis of lysophosphatidylserine from phosphatidylserine. Importantly, phospholipase-A1 was abundantly expressed in the duct epithelium of salivary glands and those involved in lymphoepithelial lesions (LELs). Our findings advocate a model of paracrine stimulation of malignant B-cells via GPR34, in which PLA is released by LELs, and hydrolyzes the phosphatidylserine exposed on apoptotic cells, generating lysophosphatidylserine, the ligand for GPR34. Thus, GPR34 activation potentially bridges LELs to genesis of SG-MALT-Lymphoma.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献